
Zoetrope: Interacting with the Ephemeral Web

Eytan Adar†, Mira Dontcheva‡, James Fogarty†, and Daniel S. Weld†

†Computer Science & Engineering
DUB Group, University of Washington

Seattle, WA 98195
{eadar, jfogarty, weld}@cs.washington.edu

‡Advanced Technology Labs
Adobe Systems

San Francisco, CA 94103
mirad@adobe.com

ABSTRACT
The Web is ephemeral. Pages change frequently, and it
is nearly impossible to find data or follow a link after the
underlying page evolves. We present Zoetrope, a system
that enables interaction with the historical Web (pages, links,
and embedded data) that would otherwise be lost to time.
Using a number of novel interactions, the temporal Web can
be manipulated, queried, and analyzed from the context of
familar pages. Zoetrope is based on a set of operators for
manipulating content streams. We describe these primitives
and the associated indexing strategies for handling temporal
Web data. They form the basis of Zoetrope and enable our
construction of new temporal interactions and visualizations.

ACM Classification: H5.2 [Information interfaces and
presentation]: User Interfaces. - Graphical user interfaces.

Keywords: Web, temporal informatics, Web extraction
INTRODUCTION
The World-Wide Web is highly dynamic, evolving with
surprising speed over time. News stories, Wikipedia articles,
social network profiles, and corporate pages are continually
updated. Automatically generated pages, whether driven
by back-end inventory-control systems (e.g., travel and
e-commerce sites) or real-time sensor streams (e.g., traffic,
weather, and webcams) may change even more quickly.

In contrast, most Web usage is restricted to the Web’s most
recent state. People access the Web through browsers that,
with the exception of simple caching, provide access only to
the Web’s present state. Although search engines provide
quick access to a vast corpus, retrieval is again limited
to the most recent snapshot recorded by the underlying
crawler. The headlines on today’s CNN homepage will be
gone tomorrow, and yesterday’s price for a book on Amazon
is likely irretrievable today. Even if historical data still
exists, it may be aggregated into averages or split among
many webpages. For a person who does not have access
to historical data, or would find it difficult or impossible to
recreate, the Web is primarily one-dimensional, containing
only one version of any page. The current lack of support for
temporal access to the Web makes it difficult or impossible
to find, analyze, extract, and compare historical information.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
UIST’08, October 19–22, 2008, Monterey, CA, USA..
Copyright 2008 ACM 978-1-59593-975-3/08/10 ...$5.00.

Figure 1: Temporal lenses include a slider for
accessing previous versions, a scented widget that
shows the location of available content, and buttons
for creating visualizations and binding lenses together.

This paper presents Zoetrope, a tool for interacting with the
extended history of the World Wide Web. With Zoetrope,
one can explore past versions of entire pages or place lenses
(Figure 1) on any part of a webpage to scan backwards
through time (e.g., to see all previous top headlines on CNN’s
page). Lenses can be filtered with keyword and other queries
or bound together to explore correlated historical data. To
support analysis of this data, Zoetrope provides a number of
visualizations for the extracted content. Because temporal
Web data is not currently available at fine granularity,
Zoetrope also includes a set of crawling and indexing
technologies for obtaining high-resolution temporal data. We
use an experimental dataset of 250 webpages from a range of
domains and websites (news, sports, weather, entertainment,
etc.) crawled at one-hour intervals for more than a month.

By providing a variety of lenses, filters, and visualizations
that can be combined and composed in powerful ways,
Zoetrope presents a new way to think about historical Web
data. As a tool, Zoetrope allows anyone to explore the
Web over time. Furthermore, Zoetrope provides developers
a mechanism for easily exploring new applications and
interactions. The contributions of our work include:

• a novel visual programming toolkit and a set of interactions
for rapidly building and testing temporal Web queries,

• a semantics for temporal data streams,
• a set of recomposable operators to manipulate temporal

data streams,
• indexing structures for fast processing and interaction with

Web content over time,
• and a unique dataset collected by a new crawler design.



Figure 2: The left browser window shows a webpage for Seattle traffic conditions. A person draws a lens on the region
of interest (the bridges crossing Lake Washington) and specifies a temporal filter, selecting only content fetched between
6-7pm (i.e., 18-19 in 24 hour format). The browser window on the right shows the resulting lens, in purple, with tick marks
on top indicating each instance of 6pm (the page is faded in the figure to emphasize the lens). Below the browser windows
we show the Zoetrope transform and filter pipeline that enable this interaction.

ZOETROPE INTERFACE
Zoetrope presents webpages in a zoomable canvas, within
which a person can simultaneously explore past versions
of any number of webpages. To browse previous versions,
one can move the slider at the bottom of the display or,
alternatively, place one or more lenses on different parts of
a webpage. For example, consider Ed, who at lunchtime
becomes anxious about his evening commute. Although he
knows the traffic page, the page only displays the current
traffic conditions. Without Zoetrope, Ed might be able to
find older traffic flow maps, but this search would likely
require considerable effort. Instead, Ed can adjust the
Zoetrope slider and instantly view previous versions of any
page. To focus on a specific part of a webpage, Ed selects
a visual lens from the lens menu and draws directly on
the webpage to specify which part of the traffic map is of
interest (see Figure 2). He also adds a temporal filter to the
lens, because he is only interested in traffic information at
6pm. Zoetrope creates a visual lens for Ed’s selection that
includes a slider, a scented widget [28], and several buttons
for further refinement. By moving the slider, Ed is able
to shift backwards and forwards day-by-day to review past
congestion. Buttons to the left and right of the lens allow
Ed to synchronize the entire webpage to a selected time, to
close the lens, to bind multiple lenses together, or to generate
a visualization based on the selected content. Throughout
this task, Zoetrope allows Ed to use a webpage he is familiar
with, in its present version, to contextualize his query into
the past. Although Zoetrope displays the rendered webpage
as an image, the system maintains the interactivity of the
live webpage. Clicking on a hyperlink opens a browser for
the present version of the hyperlink target (or the historical
version corresponding to the slider selection, if it exists
within Zoetrope).

SYSTEM ARCHITECTURE
The Zoetrope architecture, summarized in Figure 3, includes
a Web crawler that collects data, a set of databases to store
collected content, and an interface that provides access to the
stored data. The crawler collects data at regular intervals and
associates each crawled page with a time. Each page is stored
in two databases: (1) as XML providing Zoetrope access to
the structure and text for indexing and extraction, and (2)
as an image providing Zoetrope nearly instant access to the
page’s visual appearance. When a person views a page in
Zoetrope, each instance of the crawled page and associated
time are loaded as a content stream. Conceptually, a content
stream is a sequence of tuples (i.e. pairs), 〈Ti, Ci〉, where
Ci is a content item, such as a webpage or some piece of
a page, and Ti is the time when that content was sampled
from the Web. When a person creates a lens or some other
visualization, Zoetrope generates a sequence of operators,
which process data with transforms and filters, and routes the
content stream through them. Finally the stream is displayed
using renderers. Our current implementation supports lenses
and visualizations, but we expect that there may be other
interesting types of renderers. Additionally, Zoetrope can

Figure 3: An overview of Zoetrope’s architecture.



export content streams to external systems, such as Google
Spreadsheets (docs.google.com).

In Figure 2, for example, we see a graphical representation of
the operators corresponding to Ed’s visual lens: a transform
consumes the content stream, it extracts a small cropped
image and a small part of the document text, a filter decides
which instances occur between 6 and 7pm, and the renderer
uses the slider location to display a specific instance from
this stream.
TEMPORAL LENSES
A lens allows a person to select some content and track
it over time. Although there are various flavors of lenses,
their creation and use is nearly identical. A person creates
a lens simply by drawing a rectangular area on the webpage
surface. In the underlying semantics of the Zoetrope system,
the creation of a lens produces a parametrized transform
operator that acts on the original page content stream, an
optional filter (or set of filters) that processes the transformed
stream, and a renderer that displays the historical data in
the context of the original page (see Figure 2). The specific
selections of transforms and filters depends on the lens type.
We currently implement three types of lenses for tracking
different types of information: visual, structural, and textual.
Visual Lenses
The simplest Zoetrope lens is the visual lens. To create this
type of lens, a person specifies a region on the original page
(e.g., a portion of the traffic flow map in Figure 2). The
specification produces a lens with a slider. The slider is
parametrized on the width of the lens and the range of data
being displayed. As the slider moves, the lens renders the
corresponding data.

More formally, the lens specifies a rectangle R (coordinate
of origin, width, and height), which is used to parametrize
a cropping transform. The cropping transform consumes
a stream of Document Object Model (DOM) trees and
rendered page images and outputs a stream of DOM forests
(the subset of the original DOM that is rendered within
the rectangle) and cropped images. Recall that a content
stream is represented as a set of tuples, 〈Ti, Ci〉, where Ci

is the content and Ti the time. In this case, Ci contains
the document (as a DOM tree), the CSS templates, images,
and flash files (call these Ci.DOM, Ci.CSS, etc.) As an
optimization, the tuple content also contains the rendered
representation of the page, Ci.img. Thus, a visual lens
converts each tuple of the form 〈Ti, Ci.DOM, Ci.img〉 →
〈Ti, SELECT(Ci.DOM, R), CROP(Ci.img, R)〉. The generated
stream is passed to the lens renderer, which displays the
cropped image corresponding to the selected time.
Structural Lenses
Not all webpages possess sufficient stability for a visual lens.
Slight shifts in rendering or more significant movement of
elements can cause distracting jumps when a person moves
the lens slider. To counter this effect and to allow for
more precise selections, Zoetrope provides structural lenses.
Structural lenses are created in the same way as visual lenses,
by drawing a rectangle around an area of interest, but they
track selected HTML content independent of visual position.

Formally, R denotes the rectangle that identifies the DOM
elements of interest at lens creation time, s. The lens creation

Figure 4: A textual lens can track content regardless of
where it appears on the page, such as the Toronto Blue
Jays, which over time shift in the ordered list above.

process finds the XPath, P , that describes the upper-leftmost
element rendered within R. When the path P is applied to
the DOM at time s, XPATH(P,Cs.DOM), the result is some
DOM element, Es. We use Es.x and Es.y as the origin
coordinate for the crop in all other versions and are able to
track selections more accurately. A precise specification of R
is not necessary. Zoetrope finds all DOM elements contained
in the selection and resizes the rectangle (now R′), visually
snapping to the selected elements.

The transform works on tuples in the following way:

〈Ti, Ci.DOM, Ci.img〉 → 〈Ti, SELECT(Ci.DOM, R′),
CROP(Ci.img, R′′ = (Es.x, Es.y, R′.width,R′.height))〉

As before, this output stream of tuples is sent to a lens
renderer which displays the image for the selected time.
Textual Lenses
Visual and structural lenses are dependent on certain types
of webpage stability. A visual lens relies on stability of
the rendering, whereas a structural lens takes advantage of
structural stability. Both are reasonable in many scenarios,
but it is also worth considering selections based on unstable
or semi-stable content. For example, consider tracking a
specific team in a list of sports teams that is ordered by some
changing value, such as rank (see Figure 4). As teams win
and lose, the team of interest will move up and down the list.
Specifying a rectangle at (100, 400), or the fourth row in the
list, will not work when the team moves from this position.
To address this type of selection, we introduce the notion of
a textual lens, which tracks a textual selection regardless of
where the text is located on the page. A textual lens can track
exactly the same string (e.g., a blog story) or approximately
the same string (e.g., a sports team name with a score, where
the score changes from time to time).

In its most general form, a textual lens tracks arbitrary text
regardless of where it appears on the page, which DOM
elements contain the text, and the size of those elements.
This generalization is unfortunately too computationally
intensive, even in scenarios where the text is unchanging,
and the problem becomes intractable for an interactive
system. To make our textual lenses interactive, we restrict
the search space by making use of the document structure.
Textual lenses often track items that appear in tables,



lists, or structurally similar sub-trees (e.g., posts in a
blog all have similar forms). We take advantage of this
structural similarity by generalizing the paths of selected
DOM elements. For example, a path of the form /html[1]/
body[1]/table[4]/tr[5]/td[2] can be generalized to
/html/body/table/tr/td. Applying this more general
XPath to the DOM returns all elements that match this
pattern, instead of just the specific item that was selected.
In practice, we find that this transformation overgeneralizes
the selection and that CSS class attributes are useful for
constraining the patterns to eliminate unlikely DOM elements.
For example, the headline and body of an article may both
match the pattern above (they are both in a table), but the
headline will have “headline” as its class attribute while
the article will have “article” as its class attribute. We
therefore add class attributes to the generalized path (e.g.,
/html/body/table/tr/td [@class=’headline’]) to
constrain the resulting set of similar items. Given this
generalized path, P ′, the transform produced by the lens
identifies all matches at a particular time by applying the path
to the DOM (i.e., XPATH(P ′, Ci.DOM) = {Di,1, . . . , Di,n}).

Next, Zoetrope finds the closest matching element for each
time using a similarity metric, SIM, which calculates the
textual similarity of the originally selected content, Ds, to
each of the extracted elements. For each time, i, Zoetrope
finds the Di,best that is most similar to Ds. We currently use
the Dice coefficient to compute similarity, which calculates
the overlap in text tokens between two pieces of text (i.e.,
SIM(A,B) = 2 ∗ |A ∩ B|/(|A| + |B|), where A and B are
sets of words). When the initial selection is a forest rather
than a tree of DOM elements, Zoetrope generates the cross
product of each generalized path. In other words, given two
generalized paths, P 1 and P 2, we calculate

XPATH(P 1, Ci.DOM) × XPATH(P 2, Ci.DOM) =
{D1

i,1, . . . , D
1
i,n} × {D2

i,1, . . . , D
2
i,m} =

{{D1
i,1, D

2
i,1}, {D1

i,1, D
2
i,2}, . . . , {D1

i,n, D2
i,m}}

These groups are filtered to find those that satisfy the initial
hierarchical relationship of the selection. For example, if
two sub-trees in the original selection have a hierarchical
distance of 5, the pairs tested in the generalized path should
have the same distance. An alternative to hierarchical
distance is visual distance (i.e., both elements should fit
inside a rectangle of the size originally specified by the
lens). Similarity in such cases could be determined as a
combination of similarity scores. Our initial implementation
simply merges all the text from a group into one text block
before calculating the similarity. A threshold can be set as
input to the transform, restricting returned elements to those
sufficiently similar to the input. This threshold can be varied
depending on how much the content is likely to change from
the original selected version.

To summarize, a textual lens is created by the selection
of a region, the automatic conversion of the selection to a
generalized path, and the use of this path as a parameter to
the transform. The transform works on the DOM and images
for each time, generating an image cropped to the upper-left
coordinate of the best matching element set (Di,best) and
sized to the width and height of the original selection, R.

〈Ti, Ci.DOM, Ci.img〉 → 〈Ti, Di,best, CROP(Ci.img, R′′ =
(Di,best.x, Di,best.y, R′.width,R′.height))〉

As before, the output is passed to a lens renderer that displays
the appropriate cropped image according to the time selected
with the slider.

Taken together, the visual, structural, and textual lenses form
the basis of Zoetrope’s interactions. They are sufficient for
tracking and extracting a wide range of data types within a
page, thus enabling Zoetrope’s filters and visualizations.
Applying Filters to Lenses
Given the large volume of data encoded in a content stream, it
is natural to want to focus on specific information of interest.
Zoetrope uses filters to provide this capability. If we consider
the evolving state of content as a database relation, then a
filter is simply a select operation in relational algebra (e.g.,
select tuples where some condition). There are a number of
useful conditions for selection, including:

• Filtering on Time: As in our original example, one may
wish to see the state of one or more streams at a specific
time or frequency (e.g., 6pm each day).

• Filtering on a Keyword: The selection condition may
also refer to Ci, the content half of the tuple 〈Ti, Ci〉. If
Ci contains text, then keyword queries may apply. For
example, one might only be interested in headlines that
contain the word “Ukraine” (Figure 5).

• Filtering on Amounts: One may also select content using
an inequality and threshold (e.g., > k). If the content is
numeric and the inequality is satisfied, then the tuple is
kept; otherwise it is filtered. Similarly, one can select the
maximum or minimum tuple in a numeric stream.

• Duplicate Elimination: It may also be useful to select
only those tuples whose content is distinct from content
seen earlier in the stream.

• Compound Filters: Logical operations (conjunction,
disjunction, negation, etc.) may be used to compose more
complex selection criteria.

• Trigger Filters: An especially powerful filter results when
one stream is filtered according to the results of another
stream’s filter. For example, Ed can filter the traffic page
using a conjunction of the 6pm time constraint and a
trigger on the ESPN page for the keyword “home game.”
We will return to this when considering lens binding.

Because filtering is useful for many tasks, it is provided
as an option whenever a visual, structural, or textual lens
is applied. When selecting a region with filtering enabled,
a lens is created based on the underlying selection and a
popup window asks for a constraint to use in the filter, such
as a word or phrase. Other appropriate constraints include
maximum, minimum, and comparison operators.

Time-based filters can include a time range (e.g., the weather
between June and March) or a sampling rate (e.g., the
ending stock price every day). To use a time range, a
person must specify a start time and end time. Sampling
rates are specified with recurrence patterns of the form:
Month/Day/Year Hour:Minute. For example, a lens with
time filter */1/* 18:* displays content from the first day of



Figure 5: This lens only displays articles that include
the word “Ukraine.” The scented widget above the
slider indicates the location of such articles.

every month between 18:00 and 19:00 (i.e., during 6pm), as
shown in Figure 2.

Filtering is visually depicted with a scented widget [28],
which is displayed as a small embedded bar graph (Figure 1
and 5). The bar graph is displayed above the slider, indicating
the location in time of the matching tuples. As a person
moves the slider, the slider snaps to the bars, which act
like slider ticks. Note that the bars need not be all of the
same height and may reflect different information. A tall
bar can indicate the appearance of new content that matches
a filter, and a short bar can indicate content that appears
previously but still matches the filter. Consider Figure 5 in
which a person has specified stories that mention “Ukraine.”
The tall bars indicate that a new story has emerged about
the Ukraine at that time (e.g., “Yushchenko orders troops to
Kiev”), whereas the short bar means that the “Ukraine” story
still exists on the page but is not new.

Binding Lenses
People are often interested in multiple parts of a page or
parts of multiple pages, as they may be comparing and
contrasting different information. For example, in addition
to traffic maps from 6pm each day, Ed might also want to
look at traffic conditions on days when there are baseball
games in the nearby stadium. Zoetrope flexibly allows
for the simultaneous use of multiple lenses. Lenses can
act independently or be bound together interactively into
a synchronized bind group. Sliders within a group are
linked together, causing them all to move and simultaneously
update their corresponding lens.

People may bind lenses for different reasons. For example, to
check traffic at 6pm on home game days, Ed can bind a lens
for traffic maps at 6pm with a lens for home games from his
favorite baseball site. Each lens in a bind group constrains
its matching tuples to only include versions allowed by
all other lenses in the group. Recall that this is achieved
through a trigger filter. Each lens can add a new trigger filter
parametrized to the time intervals that are valid according to
other members of the bind group. Only tuples that satisfy all
trigger filters are allowed. Thus, the resulting stream shows
traffic data at 6pm only on days for which there are home
baseball games.

Lenses can also be bound disjunctively. For example, one
may want to find when book A’s price is less than $25 or
when book B’s price is less than $30 (i.e., one of the two
books has dropped in price). Zoetrope supports this type
of bind, which is currently obtained by holding the shift
key while performing the bind operation. However, this
operation creates an interesting twist as it causes data to
be un-filtered. When binding two lenses in this way, filter
operators can be thought of as operating in parallel rather
than serially. A tuple passes if it matches any filter.
Stacking Lenses
In addition to binding, Zoetrope also supports the stacking
of lenses. For example, consider a person who creates
one lens on a weather page, filtering for “clear” weather,
and would like to further apply a filter that restricts the
selection to between 6 and 7pm daily. Explicitly drawing
one lens over the other and then binding them is visually
unappealing and does not take advantage of the underlying
semantics of the language. Instead, we introduce the notion
of lens stacking. The toolbar in the Zoetrope window,
which allows people to select the type of the lens, can also
be used in a specialized binding operation which we call
stacking. By dragging a lens selection from this toolbar
to the bind button of the lens, a person indicates that they
would like to further filter the existing lens. The original lens
is replaced, and a new combined lens is generated, which
takes the transform and filter from the original selection and
augments it with additional transforms and filters. This new
lens satisfies both the selection and constraints of the original
lens as well as the new one. Furthermore, because some
filters and transforms are commutative, stacking provides the
opportunity to reorder the internal operations to optimize the
processing of tuples.

Finally, we consider the partial stacking of lenses where a
person wants to make a sub-selection from an existing lens.
For example, a person may apply a textual lens that tracks a
specific team in the ranking. The textual lens will track the
team no matter where they are in the ranking, but the person
would further like to pull out the wins for that team at various
time points. Thus, they may create a second structural lens
that consumes the selection of the textual lens and selects
the wins. While most lenses can be easily stacked without
modification, lenses that stack on top of textual lenses require
a slight modification to utilize relative information (paths or
locations). This subtle modification is necessary because the
textual lens selects information that is not in a fixed location
in either the x, y space or the DOM tree. Because the textual
selection is variable, the structural lens must utilize a path
relative to the selection rather than an absolute path.

Design Considerations
The data Zoetrope manipulates irregularly changes, shifts,
and vanishes, and thus our design had to address and
accommodate this unpredictable behavior.

DOM Changes and Selection Failures Since Zoetrope
lenses track information over time, Zoetrope must be able to
robustly extract the desired content from different versions
of a webpage. However, it is not just the information within
pages that changes; occasionally the structure of a page
also changes. Indeed, we believe that any page displaying



interesting, dynamic content will eventually undergo a
template change which is sufficiently large that most extraction
schemes will fail [6]. Others have responded to this challenge
by constructing increasingly sophisticated extraction and
tracking systems (e.g. [4, 17, 21]). These methods might
be readily integrated into Zoetrope, however, by design
Zoetrope can partially sidestep this problem. Zoetrope’s real-
time feedback allows a person to immediately see whether a
desired selection effect was obtained. This is only possible
because Zoetrope works over historical data and need not be
robust in the face of unknown future changes.

A unique feature of Zoetrope is that we have targeted data
that is changing quickly and thus requires crawling at a
fairly rapid rate relative to other systems (currently once per
hour). It is therefore worth briefly examining the amount of
structural change that occurs in this type of data. Using our
test collection, we attempted to track the stability of DOM
paths. We examined the first crawl of each page and collected
all of the leaf DOM nodes. We also looked at a re-crawl
from an hour later to remove formatting nodes (e.g., “bold”
or “italic”) that quickly vanish and are not part of the page’s
template. The remaining DOM nodes were tested against
versions of the webpages a full day, a full week, five weeks,
and a nearly a year later. We found that the median survival
rate of DOM elements within a page is 98% after one day
(87% mean), 95% after one week (83%), 63% after five
weeks (61%), and 11% after one year (23%). The differences
between the median and mean survival rates indicate outliers
in both directions (pages where nearly all elements disappear
within a day and pages where nearly all elements remain after
a year). Between the initial crawl and the crawl at the end of
five weeks, we see that vanished DOM elements, on average,
contained 53 characters of text (38% of vanished characters
were within links, each link averaging 17 characters). DOM
elements that survived, on the other hand, had an average of
131 characters, suggesting greater stability in larger DOM
elements. The tremendous amount of path death after a
year is unsurprising. It confirms that websites undergo
significant template changes that cause extractor failures.
Anecdotally, however, we find, as did [6], that although some
pages (e.g., www.bankrate.com or money.cnn.com) undergo
major HTML structural changes, the visual placement of key
features (e.g., a box of mortgage interest rates) is constant
even after a year. While we hope that Zoetrope’s interaction
style allows people to quickly validate their extractions, we
also wish to improve our extractors by augmenting DOM
paths with visual and textual features.

Extraction failures may occur even when a page is sampled
frequently over a short interval. The best response depends
on whether such a failure is believed to be permanent
or intermittent. Intermittent failures may be caused by
randomization of page data (e.g., in a temporary promotion,
Amazon interjects a counter of Harry Potter book sales on
the front page). The simplest solution for addressing such
transient effects is to introduce a dummy (blank) image when
an element does not exist. In our experiments, however, we
found that introducing blank images for failures results in a
disconcerting visual oscillation—the motion appears much
like a low frame rate animation. Zoetrope instead displays

Figure 6: This illustration displays Zoetrope’s
interpretation of sampled content streams.

a valid extraction from an immediately previous or future
version. More formally, suppose that a lens slider is at time j
and the nearest sample does not exist. Let i and k denote the
times of the closest valid samples such that i < j < k. In this
case, we display the cropped image from the closer of i or k.
If time i does not exist (i.e., there are no past instances where
the element exists) or k does not exist (no future instances),
the first or last valid instance is used respectively. Although
artificial, this technique creates the illusion that the selection
is continually present over all times. To avoid “deception,” a
cue (such as a red frame on the lens) can be displayed.

Windows in Time It is worth briefly considering the design
decision to display past content in the context of a webpage.
In our design, the historical information overwrites the part
of the page where the lens is located. An alternative would
be to respond to slider motion by loading the entire page for
a specific time and offsetting that page so that the selected
area is underneath the lens (similar to automatically panning
the lens “camera” at each step). Although we can enable
this mode, we found two main reasons why this type of
movement was unappealing.

First, the motion and replacement of the entire page (rather
than a small area) was highly distracting. Rather than
visually tracking changes in a small area of interest, a person
must track changes across the entire screen. Second, it is
not clear what should happen when a person creates multiple
lenses on the same page. As described above, multiple
lenses represent different selections within a page. These
selections may not always have the same visual relationship
(for example, being 10 pixels apart in one time and 500 pixels
apart in another) and may be set to different times. Given
these constraints, it may not be possible, without distortion,
to offset the underlying page to a position that works for all
time periods or combinations of lenses.

Notions of Time in Zoetrope When binding lenses on
different pages, it becomes important to consider the sampling
rate of each webpage, as dynamic pages that change rapidly
may be sampled more frequently than those that are more
static. Because we wish to present a continuous and easily
manipulated abstraction that hides the details of sampling,
we make several assumptions: (1) we assume that Zoetrope’s
sample rate is sufficiently frequent to capture every relevant
state of the page, (2) we assume that, when content changes,
it does so at the time point which is midway between the
times of the two differing samples.



Figure 7: This timeline visualization shows the duration and frequency of news articles on the cbc.ca website.

Figure 6 summarizes this interpretation of content streams.
Suppose page A is sampled at times 1, 5, and 10; B is
sampled twice, at 4 and 8. We interpret this as if stream
A has content a1 during the half-open interval [1, 3), has
content a2 during [3, 7 1

2 ), and content a3 during [7 1
2 , now).

By making these assumptions, we again support the illusion
of a fully-defined state over time as a person manipulates a
lens over a temporal range.

The details of this interpretation become especially important
when a person binds two lenses, making them show the
same time (as in Ed’s investigation of the effect of baseball
games on traffic). Specifically, the interpretation defines a
global state for the partially-sampled system, which allows
Zoetrope to display corresponding states in multiple lenses
simultaneously. In the example of Figure 6, there are four
global states, defined by the cross product of the two streams:

[1, 3)=a1b1 [3, 6)=a2b1 [6, 7 1
2 )=a2b2 [7 1

2 , now)=a3b2

Formally, the evolving global state of the system may be
viewed as a database relation where time is a foreign key.
VISUALIZATIONS
Lenses enable viewing of Web content from different moments
in time, but this exploration may be just the first part of
satisfying an information need. For example, a book’s cost
at specific points in time is interesting, but a person may
also want to graph the price over time, calculate averages, or
test variability. To facilitate this type of analysis, we have
created a number of renderers that visualize or otherwise
represent selected data. Visualizations, like lenses, create
a sequence of transforms, filters, and renderers to display
results. Although visualizations can exist independently of
a lens, a lens typically defines the data displayed in the
visualization. Lenses can thus also be used as a prototyping
tool for testing selections and aggregations.

The transforms, filters, and processed streams generated
by the lens can be directed to visualization rendering
components that implement the visualization itself. For
example, in a typical workflow one might place a (potentially
filtered) lens on a book price, move the slider to test the
selection, and click on the visualization button to graph the
price over time. Internally, the visualization step reuses
the transform module of the lens and connects it to a time
series renderer (see Figure 9). As we describe below, other
renderers provide additional visualization alternatives.
Timelines and Movies
The simplest Zoetrope visualization type is the timeline (see
Figure 7), which displays extracted images and data linearly
on a temporal axis. This visualization allows, for example,

Figure 8: This cluster visualization shows traffic data
according to weather conditions.

viewing weather patterns over the course of a year, headline
images in stories that mention Iraq, or unique articles about a
favorite sports team (all ordered by time). As before, the
rendered images visualized in the timeline are live and a
person can click on any of the links. Double clicking on
any image in the visualization synchronizes the page (or
pages) to the same time, allowing a person to see other
information that appeared on the page at a particular time.
This visualization can also eliminate duplicates and display
a line next to each image depicting its duration. This type
of display shows when new content appears and how long it
stays on a page (e.g., a story in the news, a price at a store)
To prevent the timeline from running indefinitely to the right,
the visualization can fold the line into a grid with each row
denoting activity over a day (or other interval).

The timeline visualization gives an instant sense of everything
that has happened over some period. However, other
examples are best served by cycling through the cropped
images to produce an animated movie. Although this is
equivalent to simply pulling the slider through time, a movie
visualization automates and regulates transitions and looping
while the visualization cycles through the images. For
example, a static USGS earthquake map can be transformed
into an animation of earthquakes over time, helping to
pinpoint significant events.

Clustering
Our timeline visualization is a simple example of a grouping
visualization, where extractions are grouped by some variable
(time in this case). However, other more complex groupings
are also possible. Clustering visualizations group the
extracted clips using an external variable derived from
another stream. For example, a clustering visualization can



Figure 9: A time series visualization displays the Harry
Potter book sales, or Muggle Counter, over time.

merge data from two different lenses, using one lens to
specify the grouping criteria while the other lens provides the
data. Figure 8, for example, shows a cluster visualization of
traffic and weather data. The visualization creates a row for
every weather condition (e.g., sunny, clear, rain), and every
instance from the traffic selection is placed in the appropriate
row depending on the weather condition at the time of the
clipping. If it was rainy at 8:15pm, for example, the traffic
map from 8:15pm is assigned to the rainy group.
Time Series
A variety of interesting temporal data is numerical in nature,
such as prices, temperatures, sports statistics, and polling
numbers. Much of this data is tracked over time; however,
in many situations it is difficult or impossible to find one
table or chart that includes all values of interest. Zoetrope
automatically extracts numerical values from selections of
numerical data and visualizes them as a time series. Figure
9 shows a visualization of the number of Harry Potter book
sales over time. The slider on the x-axis of the time series
visualization is synchronized with the slider in the original
lens selection. When the person moves the lens slider, a line
moves on the time series visualization (and vice versa).

Time-series visualizations take the output of a lens and
transform it to extract numerical values (i.e., 〈Ti, Ci.T ext〉 →
〈Ti, Numberi = FINDNUMBER(Ci.T ext))〉). At present, we
use a simple regular expression, but a more complex
transformation can be included to handle selections with
multiple numbers or mathematical transforms.
Exporting Temporal Data
Zoetrope offers many useful visualizations, but was also
designed for extensibility. Data extracted using Zoetrope
lenses is therefore also usable outside of Zoetrope. Systems
such as Swivel (www.swivel.com) or Many Eyes [27] excel
in analysis and social interactions around data, but are
not focused on helping people find the data in the first
place. Zoetrope is able to generate a temporal, data-centric
view of different websites to meet this need. To export
data outside of Zoetrope, we created a Google Spreadsheet

“visualization” that sends the lens-selected values to the
external Google Spreadsheet system. When a person selects
this option, appropriate date and time columns are generated
along with the content present at that time interval (either
strings or numerical data). This scheme greatly expands
the capabilities of Zoetrope by allowing people to leverage
external visualizations, integrate with Web mashups, or
perform more complex analyses.
IMPLEMENTATION
Zoetrope is a Java-based program implemented using the
Piccolo library [1]. Zoetrope primarily relies upon Piccolo
for zooming features, but we generally implement our
own image functions to manipulate, slice, and display
webpages. Zoetrope’s implementation is designed to balance
the need for interactivity with scale. Pre-rendering and
caching certain data structures and images in memory allows
Zoetrope to respond in near-real time. Using low-resolution
images, the system provides immediate interactivity during
slider motion. The system also takes advantage of idle
time to background load high-resolution cropped images.
Visualizations based upon images also use low-resolution
substitutes that are gradually replaced as higher-quality
versions become available.
Crawling
The underlying Zoetrope data is generated by crawling
pages at semi-regular intervals. Although at present we
have selected a one hour re-crawl rate, this interval could
be strategically determined by observing the amount of
content change. Initially, the crawler was constructed
using a modified wget process (the unix command) that
retrieved both the page of interest as well as all content
attached to a page (JavaScript, CSS, images, flash files,
etc.). This, in itself, is generally sufficient to create
an approximation of the page as it appeared at a given
time. However, dynamically re-rendering pages creates
unattractive delays that are inconsistent with Zoetrope’s need
to support highly-interactive rapid shifts among different
times. This led to the previously mentioned optimization of
storing pre-rendered images of pages. Image generation was
initially achieved with a program containing an integrated
Internet Explorer browser. The program, run separately
from the crawler, would read the crawled data and produce
a rendered image and a modified HTML file that included
the rendered location of each element in the DOM. This
transformation is consistent with our notion of temporal
tuple processing, as the system iterates over page instances
and produces a second stream of images. We quickly
realized that the difficulty with this approach was that content
was frequently missed in the crawl (what wget captures
is different from what the browser expects), and dynamic
content produced a mismatch between what was retrieved
and what was rendered (e.g., a JavaScript program that
inserts the current time into the page, at rendering time,
regardless of when the page was crawled).

We solved this problem with a new system that combines
crawling and rendering into a synchronized process. We
extensively modified and integrated two Firefox plugins. The
first, Screengrab! (www.screengrab.org), produces a capture
of whatever is being displayed in Firefox. The second,
WebPageDump [22], waits until the page DOM stabilizes



in memory and subsequently outputs a single JavaScript-free
HTML page, images, and a single CSS document describing
all necessary layout constraints. As before, the HTML
page is modified to contain the coordinates of all rendered
DOM elements. Based upon both of these plugins, our
current Firefox-based crawler captures both an accurate
representation of the page as it looked at the time of retrieval
and sufficient content so that the page can be correctly
re-rendered if necessary. Using a Firefox plugin has the
further advantage that people can add to their own database
as they browse the Web.

Our experimental dataset includes 250 pages and over 1000
samples per page. Each page requires, on average, storing
92Kb (68Kb median) per crawl beyond the original page,
which requires an average of 320Kb. This includes all
content necessary to render any crawled version of the page
(e.g., HTML, all images, Flash files). The first page crawl is
much larger, because in subsequent crawls we check linked
files, such as CSS and image files, for changes and only
download them when they have changed. We compute an
MD5 checksum to check for changes. Subsequent crawls
are thus only about 28% of the size of the original crawl.
Most of the new data, 92%, is due to HTML changes rather
than changes in linked files. We believe that our dataset
size is artificially high for a number of reasons: (1) the
pages in our dataset were selected because they are known to
change frequently, (2) we do not currently throw out content
that is duplicated between pages from the same website,
and (3) we do not compress any files. If we eliminate
these inefficiencies, we believe that crawls and storage space
requirements could be significantly improved. For example,
if we compress the pages using rzip, which takes advantage
of repetitions across files, the average HTML page crawled 5
weeks after the original visit requires only an additional 2Kb
of storage (272 bytes median) over the compressed version of
the original page (15% of the size of the original compressed
page).

Backend
The DOM for each version of a page are loaded into an
in-memory XML database. Saxon (www.saxonica.com),
provides XPath query functionality and allows us to rapidly
find matching elements or entire versions of pages. An
in-memory index also tracks DOM elements by their rendered
x and y coordinates. This structure allows us to quickly find
which elements are clicked or selected.

RELATED WORK
Research on the evolution of change on the Web [10]
indicates both a high rate of change and large variance in
the degree of change. After changing, information on the
Web generally vanishes for all intents and purposes. Even
archive systems like the Internet Archives (www.archive.org)
and Google’s cache only preserve a partial history. Previous
copies, such as they are, are not generally accessible in a
useful way, but instead require a person to manually search
for and individually collect each page.

In response to the need for temporal data, a number of
solutions have emerged in the research community. Arguably
one of the first, the AT&T Difference Engine [9] archived
pages and displayed differences between consecutive versions

of pages. Because HTML is semi-structured, researchers in
the database and data mining communities have expanded
ideas on XML differencing to HTML/Web differences
(extensively surveyed in [12]). Zoetrope is not explicitly
designed for comparing two page versions to each other
(though this can certainly be implemented). Rather, we are
interested in many instances of a given page.

Another related area of research includes Web-clipping
systems that allow people to monitor webpage regions
of interest [13, 24, 26]. These systems are typically
focused on tracking future changes rather than working
with previous versions of webpages. These efforts have
also inspired commercial efforts, such as Internet Explorer
8’s WebSlices. Multi-page clipping and mashup/extraction
applications (e.g., [7, 8, 14, 15]) are valuable tools for
extracting and combining data from the present Web, but are
not designed for historical versions. Of notable exception
are programming by demonstration (PBD) systems such as
Koala [17], which must take into account the changing Web
to preserve the validity of macros and scripts going forward.
Zoetrope implements Web-clipping features in a number of
visualizations (time lines, clusters, etc). Our architecture is
well-suited to such applications and we hope to investigate
them further in the future.

A second major area of research has been the visual display
of temporal differences in information. Certain solutions
are targeted at news while others act more generally to
represent differences between versions of webpages. These
include techniques for converting textual information into
time series [11], spatio-temporal visualizations [23], and
other difference visualizations (e.g., [18, 19]).

Architecturally, a number of database visualization systems
are related to the stream and operator design in Zoetrope.
Particularly, DEVise [20] was originally constructed to
operate on streams of data that required visualization.
Similarly, Polaris [25] operates to visualize relational data.
In both, the operators provided by the system are primarily
targeted at the rendering step (deciding how graphs, charts,
and other visualizations should be constructed). Zoetrope
instead focuses on unstructured temporal Web content from
which data can be extracted for these types of visualizations.
Other systems-focused research that could support future
additions to Zoetrope include work on automation and
scalability issues of large-scale Web archiving (e.g., [5]) and
full-text search (e.g., [2]).

Finally, although these approaches have not been targeted
at temporal Web data, we draw inspiration from the Video
Cube [16] and Magic Lenses work [3]. The former allows
video stream frames to be layered and “sliced” to find an
abstraction of the video. In the latter, a magic lens is a widget
that can be placed directly on a document to illuminate
the underlying representation while maintaining the visual
context of the document.

CONCLUSIONS

This paper presents Zoetrope, a system for interacting
with the ephemeral Web. Zoetrope allows people to
interactively access and manipulate a historical record of
the evolving Web. Familiar pages, which have previously



existed only in the present, now have the added dimension
of time. To help manage and utilize this multi-version
Web, Zoetrope implements a number of interactions based
in lenses and visualizations that allow people to access
and analyze historical information through contextualized
selections and extractions. Furthermore, developers can
use Zoetrope to rapidly prototype and test temporal queries
through Zoetrope’s visual query interface. With the Zoetrope
system, we introduce a novel semantics for dealing with
temporal Web data and show a small number of operators
that can be utilized for many different tasks. Our present
implementation of Zoetrope has only scratched the surface
of potential lenses and visualizations. By creating an
underlying language for selecting and processing temporal
page data, we hope to inspire and enable others to explore
new interactions and applications in this domain.

In addition to continuing to build new visualizations and
extractors, we are extending the semantics of the underlying
language to support more sophisticated queries and binding
operations for specifying temporal logic operations and
functions (e.g., the gas price for two days after oil prices
are $60 per barrel). Also, the highly regular sampling of
our dataset allowed for a number of assumptions in our
semantics, and we hope to further explore irregular crawl
rates and interpolating data as necessary.

ACKNOWLEDGMENTS
We would like to thank our reviewers for their helpful
comments and advice. Additional thanks to Jaime Teevan,
Susan Dumais, Rob Miller, Adam Weld, and the GRAIL
group for their feedback on this work. This work is partially
supported by the WRF / TJ Cable Professorship. Eytan Adar
is supported by an NSF Graduate Fellowship and by ARCS.

REFERENCES
1. Bederson, B. B., Grosjean, J., and Meyer, J. (2004). Toolkit

Design for Interactive Structured Graphics. IEEE Trans.
Softw. Eng., 30(8), 535-546.

2. Berberich, K., Bedathur, S., Neumann, T., and Weikum, G.
(2007). A Time Machine for Text Search. SIGIR ’07. 519-526.

3. Bier, E. A., Stone, M. C., Pier, K., Buxton, W., and DeRose,
T. D. (1993). Toolglass and Magic Lenses: The See-Through
Interface. SIGGRAPH ’93. 73-80.

4. Bolin, M., Webber, M., Rha, P., Wilson, T., and Miller, R. C.
(2005). Automation and Customization of Rendered Web
Pages. UIST ’05. 163-172.

5. Boyapati, V., Chevrier, K., Finkel, A., Glance, N., Pierce,
T., Stockton, R., and Whitmer, C. (2002). ChangeDetector:
A Site-Level Monitoring Tool for the WWW. WWW ’02.
570-579.

6. Dontcheva, M., Drucker, S. M., Salesin, D., and Cohen, M. F.
(2007). Changes in Webpage Structure over Time. Technical
Report TR2007-04-02, UW CSE.

7. Dontcheva, M., Drucker, S. M., Salesin, D., and Cohen, M. F.
(2007). Relations, Cards, and Search Templates: User-Guided
Web Data Integration and Layout. UIST ’07. 61-70.

8. Dontcheva, M., Drucker, S. M., Wade, G., Salesin, D., and
Cohen, M. F. (2006). Summarizing Personal Web Browsing
Sessions. UIST ’06. 115-124.

9. Douglis, F., Ball, T., farn Chen, Y., and Koutsofios, E. (1998).
The AT&T Internet Difference Engine: Tracking and Viewing
Changes on the Web. World Wide Web, 1(1), 27-44.

10. Fetterly, D., Manasse, M., Najork, M., and Wiener, J.
(2003). A Large-Scale Study of the Evolution of Web Pages.
WWW ’03. 669-678.

11. Fitzpatrick, J. A., Reffell, J., and Aydelott, M. (2003).
BreakingStory: Visualizing Change in Online News. CHI ’03.
900-901.

12. Grandi, F. Introducing an Annotated Bibliography on
Temporal and Evolution Aspects in the World Wide Web.
(2004). SIGMOD Rec., 33(2), 84-86.

13. Greenberg, S. and Boyle, M. (2006). Generating
Custom Notification Histories by Tracking Visual Differences
Between Web Page Visits. GI ’06. 227-234.

14. Hartmann, B., Wu, L., Collins, K., and Klemmer, S. R.
(2007). Programming by a Sample: Rapidly Creating Web
Applications with d.mix. UIST ’07. 241-250.

15. Huynh, D., Mazzocchi, S., and Karger, D. (2005). Piggy
Bank: Experience the Semantic Web Inside Your Web
Browser. ISWC ’05. 413-430.

16. Klein, A. W., Sloan, P.-P. J., Finkelstein, A., and Cohen, M. F.
(2002). Stylized Video Cubes. SCA ’02. 15-22.

17. Little, G., Lau, T. A., Cypher, A., Lin, J., Haber, E. M.,
and Kandogan, E. (2007). Koala: Capture, Share, Automate,
Personalize Business Processes on the Web. CHI ’07.
943-946.

18. Liu, B., Zhao, K., and Yi, L. (2002). Visualizing Web Site
Comparisons. WWW ’02. 693-703.

19. Liu, L., Pu, C., and Tang, W. (2000). WebCQ-Detecting
and Delivering Information Changes on the Web. CIKM ’00.
512-519.

20. Livny, M., Ramakrishnan, R., Beyer, K., Chen, G.,
Donjerkovic, D., Lawande, S., Myllymaki, J., and Wenger, K.
(1997). DEVise: Integrated Querying and Visual Exploration
of Large Datasets. SIGMOD Rec., 26(2), 301-312.

21. Phelps, T. A. and Wilensky, R. (2000). Robust Hyperlinks and
Locations. D-Lib Magazine, 6(7/8).

22. Pollak, B. and Gatterbauer, W. Creating Permanent
Test Collections of Web Pages for Information Extraction
Research. SOFSEM ’07. 103-115.

23. Rennison, E. (1994). Galaxy of News: An Approach to
Visualizing and Understanding Expansive News Landscapes.
UIST ’94. 3-12.

24. schraefel, m.c., Zhu, Y., Modjeska, D., Wigdor, D., and Zhao,
S. (2002). Hunter Gatherer: Interaction Support for the
Creation and Management of Within-Web-Page Collections.
WWW ’02. 172-181.

25. Stolte, C., Tang, D., and Hanrahan, P. (2002). Polaris:
A System for Query, Analysis, and Visualization of
Multidimensional Relational Databases. IEEE Trans. on Vis.
and Comp. Graphics, 8(1), 52-65.

26. Sugiura, A. and Koseki, Y. (1998). Internet Scrapbook:
Automating Web Browsing Tasks by Demonstration.
UIST ’98. 9-18.

27. Viegas, F. B., Wattenberg, M., van Ham, F., Kriss, J., and
McKeon, M. (2007). ManyEyes: A Site for Visualization
at Internet Scale. IEEE Trans. on Vis. and Comp. Graphics,
13(6), 1121-1128.

28. Willett, W., Heer, J., and Agrawala, M. Scented Widgets:
Improving Navigation Cues with Embedded Visualizations.
IEEE Trans. on Vis. and Comp. Graphics, 13(6), 1129-1136.


